
QMSH

Command-Line Kernel
Quick-Start User-Guide: V0

K. Edum-Fotwe
Codemine-Industrial-Software

Keywords and Categories

Geometric-Modelling, Procedural-Modelling, Polyhedral-Mesh, Constructive-Modelling, CSG, Generalised-
Cylinders, Parametric-Modelling, Boolean-Logic, Shape-Grammars, Language-Theory, Programming-
Language-Constructs, Generative-Modelling, Digital-Content-Creation, Polygonal-Modelling

Abstract

The Quick-Mesh Kernel is a general-purpose, platform-agnostic, polyhedral procedural-modelling ker-
nel which exposes a high-level, imperative geometric scripting language. This document provides a
short, informal guide to the use of the Quick-Mesh Kernel at the command-line and within user-written
programs on Linux, Mac-OSX and Windows - for the purpose of assembling 3D mesh algorithmically.

Notice of Rights

All rights reserved. No part of this publication may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher
- or in accordance with the provisions of the Copyright, Designs and Patents Act 1988. Any person who does any
unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

Notice of Liability

The information in this publication is distributed on an AS IS basis, without warranty. While every precaution has
been taken in the preparation of this publication, neither the author(s) nor publisher(s), shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this publication or by the computer software and hardware products described in it.

Trademarks

Quick-Mesh, qmsh, QMSH, .qmsh and the qmsh-logo are trademarks of K. Edum-Fotwe and Codemine-Industries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this publication, they are used in referential fashion only and for the benefit of
such companies with no intention of infringement of the trademark. No such use, or the the use of any trade name,
is intended to convey endorsement or other affiliation with this publication, its author(s) or its publisher(s).

Table of Contents

1 Introduction 4
1.1 Pre-Requisites . 4

2 Inputs & Outputs 5

3 Executable File 5

4 Command Format 5

5 Command-Line Options 6
5.1 Option-Flags to Control General-Operation of the Kernel 6
5.2 Option-Flags to Control Output 3D Model File Formats . 6
5.3 Option-Flags to Control Output Geometric Attributes . 7
5.4 Option-Flags to Control Constructive-Modelling Operations 7
5.5 Option-Flags to Control Mesh Post-Processing Operations 7

6 Example Usage 8
6.1 Command-Line Invocation . 9
6.2 Runtime Invocation via System Calls . 10

6.2.1 Runtime Invocation : C . 11
6.2.2 Runtime Invocation : C++ . 13
6.2.3 Runtime Invocation : C# . 15
6.2.4 Runtime Invocation : Groovy . 17
6.2.5 Runtime Invocation : Java . 18
6.2.6 Runtime Invocation : Objective-C . 19
6.2.7 Runtime Invocation : Python . 21

7 Additional Notes 22
7.1 Performance Considerations . 23

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

1 INTRODUCTION

1 Introduction

This short guide provides practical instructions on the use of the Quick-Mesh Command-Line Kernel
for Linux, Mac-OSX and Windows operating systems. The primary aim of this guide is to help and
direct advanced users by explaining the process of invoking the command-line tool and the meaning
and behaviour of the option flags that control the assembly (the creation/construction) of 3D model files.

1.1 Pre-Requisites

* Items Required to Follow this Guide and Model 3D Objects using the Command-Line Kernel *

• Hardware : Desktop or Laptop Computer (32-bit or 64-bit, i.e. x86 or x86_64 architecture)

• Operating-System : Linux, Mac-OSX or Windows

• Software : Quick-Mesh Kernel (a command-line executable program)

• Software : 3D-Mesh Viewer-Application (to visualise the output mesh - such as meshlab)

• Software : Text-Editor (to edit input scripts - i.e. vim, emacs, gedit, atom, notepad++, ...)

Additional (Optional) Physical Items That May Be of Use

• Pencil/Pen (i.e. a drawing or writing implement) and Paper

• Ruler/Tape-Measure (to measure dimensions if modelling physically-based entities)

Skills and Technical Experience Necessary to Wield the Command-Line Kernel Effectively

• Elementary Understanding of Geometric Modelling Operations and Techniques
e.g. using Euclidean transformations, types of primitive and polygon mesh attributes.

• Familiarity with Invoking Programs from the Terminal or Command-Line
e.g. being able to comfortably control a computer with commands rather than interactively.

• Familiarity with an Imperative Programming or Scripting Language
e.g. knowing what variables and functions are and where, how and why to use them.

• Imagination + Spatial Reasoning Skills
...and a love of geometry.

Note: that this is a technical guide targeted at advanced QMSH users - and does not cover the basics
of the scripting language. Readers are expected to already be familiar with the kernel and grammar.

Note: if you are new to procedural modelling (or programming in general) you may find it easier to begin
by trying the Quick-Mesh Mobile-Editor before progressing to using the Command-Line Kernel.

-
Page 4 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

4 COMMAND FORMAT

2 Inputs & Outputs

The input to the command-line kernel is a set of (one or more) Quick-Mesh scripts - which are plain-text
files written in the QMSH grammar (the kernel’s scripting language) - and stored with file extension
.qmsh. The output of the command-line kernel is a set of (one or more) 3D model-files.

The command-line kernel outputs mesh data in the following 3D model file-formats:

• OBJ - Alias-Wavefront’s 3D Object-Format

• OFF - Object-File-Format

• PLY - Stanford Polygon Format

• STL - Stereolithagraphy Format (or Standard Triangle/Tessellation Language)

The attributes and features supported for each output 3D model file-format are specified in figure 1.

Format vertices triangles polygons normals colours smooth-groups ascii binary

OBJ X X X X X X X -

OFF X X X X X X X -

PLY X X X X X X X X

STL X X - X - - X X

Figure 1: table of the attributes supported for the command-line kernel’s output 3D model file formats.

3 Executable File

Under Linux, Mac-OSX (and similar Unix-based) operating systems the command-line kernel’s exe-
cutable file is named qmsh. However under Windows operating systems it is named qmsh.exe.

4 Command Format

The format of the command for invoking the command-line kernel is specified below:

qmsh [OPTION-FLAGS...] [INPUT-SCRIPT-PATHS...]

where:

• qmsh - is the executable file to invoke: i.e. qmsh for Linux and OSX or qmsh.exe for Windows.

• [OPTION-FLAGS...] - is a sequence of command-line control-arguments - each of which begins
with a dash/hyphen, and with each seperated (delimited) by a space character. Refer to the
command line options section for more detail on the supported control flags.

• [INPUT-SCRIPT-PATHS...] - is a sequence of one or more input script file-paths - each of which
ends with the file extension .qmsh - and each of which shall be evaluated in the order in which
they are specified. The script files paths can either be absolute or relative.

-
Page 5 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

5 COMMAND-LINE OPTIONS

5 Command-Line Options

5.1 Option-Flags to Control General-Operation of the Kernel

-help | -man | -manual | -options | -use | -usage → print program use and option summary

Instructs the kernel to print program usage summary information to the terminal.

-about | -version | -info → print program version information

Instructs the kernel to print information (a summary-message) about the build version.

-v | -verbose → execute in verbose logging mode

Instructs the kernel to execute with a higher-level of logging messages than by default.

-d | -dir | -directory → write output mesh to a (succeeding) user-specified directory

Instructs the kernel to export generated mesh to a specific output directory. Note: that by default the
kernel saves each mesh in the same directory as its defining script. This option-flag enables one to
override this behaviour globally for every script in the command. Note: that the specified directory
MUST already exist. The kernel (purposefully) does not invoke the mkdir command on one’s behalf,
and as such it is the invoker’s responsibility to ensure the specified directory exists, prior to invocation.

5.2 Option-Flags to Control Output 3D Model File Formats

-obj → export 3D mesh in alias-wavefront’s model-format

Instructs the kernel to write ASCII .obj files for each of the input-scripts in the command.

-off → export 3D mesh in the object-file-format

Instructs the kernel to write ASCII .off files for each of the input-scripts in the command.

-ply → export 3D mesh in the stanford-polygon-format

Instructs the kernel to write .ply files for each of the input-scripts in the command.

-stl → export 3D mesh in the stereolithagraphy file-format

Instructs the kernel to write .stl files for each of the input-scripts in the command.

-b | -bin | -binary → export binary encoded 3D mesh files for applicable formats

Instructs the kernel to generate binary data instead of ASCII data for PLY and STL outputs.

-
Page 6 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

5 COMMAND-LINE OPTIONS
5.3 Option-Flags to Control Output Geometric Attributes

5.3 Option-Flags to Control Output Geometric Attributes

-p | -ngon | -ngons | -poly | -polygons | -loops → export polygonal (n-gonal) topology

Instructs the kernel to preserve the topology of mesh and write simple and complex faces.

-t | -tess | -tesselate | -tri | -triangles → export tessellated (triangle) topology

Instructs the kernel to explicitly triangulate all polygonal faces and write triangle mesh.

-n | -nxyz | -normals → export per-vertex unit-length surface-normals

Instructs the kernel to compute derivatives for mesh that may be used for rendering and shading.

-c | -rgb | -rgba | -color | -colour | -colours → export per-vertex red-green-blue-alpha colours

Instructs the kernel to include colour values for mesh that may be used for rendering and shading.

5.4 Option-Flags to Control Constructive-Modelling Operations

-noop | -no_optimisation → disable minimal-vertex topological optimisations

Instructs the kernel to forgo (omit/skip) its mesh modifications that minimise vertex-count.

-nobo | -no_boolean_ops → disable boolean-logic (set-theoretic/constructive) operations

Instructs the kernel to forgo (omit/skip) the application of CSG operations during mesh assembly.

5.5 Option-Flags to Control Mesh Post-Processing Operations

-ssv | -strip_shared_vertex | -faceted → disassociate shared-vertex to counteract gouraud-shading

Instructs the kernel to unweld vertices that are shared between surface-elements to forcibly induce a
faceted mesh. Note: applying this option typically bears a heavier mesh storage cost.

-mmv | -merge_manifold_vertex | -mm | -make_manifold | -manifold → weld duplicate vertices

Instructs the kernel to merge duplicate vertices between faces in a mesh in pursuit of a watertight 2-
manifold (suitable for 3D-printing). This option is usually coupled with the resolve-T-junctions option.

-rtj | -resolve_t_junctions → insert vertices to remove T-junctions between surface smoothing-groups

Instructs the kernel to add edge-vertices to combat non-manifold T-junctions that can appear between
the smoothing-groups of a mesh. Note: this option does not retopologise mesh-elements post insert.

-
Page 7 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE

6 Example Usage

This section provides a number of practical examples that demonstrate how to invoke the kernel directly
from the command-line and at runtime from within compiled programs via system-calls.

Figure 2 specifies the source-code for the scripts referred to in the command-line invocation examples.

six_sided_dice.qmshq

1: c = cube & sphere(32,16).s(1.4);
2: d = sphere(16,8).s(0.2,0.05,0.2).rgb(0.25);
3: z1 = d.duo.ty(0.5);
4: z2 = d.lx(2,0.4).cx.ry(45).ty(0.5).rz(90);
5: z3 = d.duo.tz(0.2).ringy(3).ty(0.5).rx(90);
6: z4 = d.duo.tz(0.2).ringy(4).ty(0.5).rz(-90);
7: z5 = d.duo + d.gridxz(2,2,0.4,0.4).cxz;
8: z5.ty(0.5).rx(-90);
9: z6 = d.duo.tz(0.25).ringy(6).ty(-0.5);
10: return c - z1 - z2 - z3 - z4 - z5 - z6;

mechanical_gear_A.qmshq

1: c = cylinder(1,0.1,32);
2: t = torus(1,0.05,32,16);
3: m = c+t;
4: i = cylinder.s(0.5).tz(1.025).ringy(8);
5: o = cylinder.s(0.25).tz(0.5)
6: .ry(180.0/8).ringy(8);
7: b = cube(0.5,1,0.05).tx(-0.5)
8: .ry(180.0/8).ringy(8);
9: h = cylinder(0.25,1,8);
10: return m - i - o - b - h;

swivel_chair.qmshq

1: c = cylinder(0.5,1,32)
2: - cylinder(0.45,1,32)
3: - cylinder(0.8,1,32).rz(90).t(0,0.5,0.5)
4: + sphere.s(0.9,0.25,0.9).ty(-0.3)
5: + cylinder(0.45,0.05,32).ty(-0.5)
6: - cube(0.6,0.05,1).ly(5,0.1)
7: + cylinder(0.1,0.5,32).ty(-0.75)
8: + cylinder(0.2,0.1,32).ty(-1)
9: + capsule(0.05,0.5,16,8).rx(90).zz
10: .rx(-10).tz(0.1).ty(-1).ry(36).ringy(5);
11: return c.cy;

Figure 2: the source-code (with assembled mesh illustrated to the right) for the scripts referred to in the command-
line invocation examples - these can be entered directly into a text-editor and saved with the file-extension .qmsh -
alternatively refer to the example_scripts directory in the command-line kernel distribution for pre-written versions.

-
Page 8 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.1 Command-Line Invocation

6.1 Command-Line Invocation

This section provides examples of command-line invocation of the kernel. The heading of each example
invocation describes the effect of the combination of option-flags employed.

Note: that these examples assume that the scripts indicated in figure 2 are located in the same direc-
tory as the kernel’s executable binary file. Additionally - if the executable or script files are not in the
current working directory then the path tokens in each invocation must be augmented to reflect each
file’s relative location to the current working directory or each file’s absolute location.

Assembling a Tessellated OBJ File
→ qmsh -obj -tess six_sided_dice.qmsh

Assembling N-Gon and Triangle OBJ Files Simultaneously with Normal and RGB Data
→ qmsh -obj -ngons -tess -n -rgb six_sided_dice.qmsh

Assembling Tessellated OBJ Files for Multiple Input Scripts
→ qmsh -obj -tess six_sided_dice.qmsh mechanical_gear_A.qmsh swivel_chair.qmsh

Assembling an ASCII STL File
→ qmsh -stl six_sided_dice.qmsh

Assembling a Binary STL File
→ qmsh -stl -b six_sided_dice.qmsh

Assembling a Manifold Binary STL File Suitable for 3D-Printing
→ qmsh -stl -binary -manifold -rtj six_sided_dice.qmsh

Assembling a Tessellated Binary PLY File with Normal and RGB Data
→ qmsh -ply -tess -n -rgb six_sided_dice.qmsh

Assembling an N-Gon ASCII OFF File
→ qmsh -off -poly six_sided_dice.qmsh

Assembling N-Gon and Triangle, ASCII, OBJ, PLY and OFF Files with Normal and RGB Data
→ qmsh -obj -ply -off -ngons -tess mechanical_gear_A.qmsh

Printing Kernel Version Information to the Terminal
→ qmsh -version

Printing Kernel Command-Line Option-Flag Summary to the Terminal
→ qmsh -help

-
Page 9 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

6.2 Runtime Invocation via System Calls

This section provides annotated source-code for a set of simple runtime invocation examples that
demonstrate the four mains steps involved in invoking the kernel from within user-written programs
via standard system-calls in the C family of programming languages (C, C++, C#, Java and Python).

At a high-level the main steps in runtime-invocation are: (firstly) to define the script statements, (sec-
ondly) to write the script statements to a file, (thirdly) to issue a system call that invokes the kernel and
(fourthly) to process the generated mesh file as required by the custom application.

Note: that although the languages in which the following minimum working example programs are writ-
ten differ - the underlying structure and functionality implemented by each is fundamentally the same -
and is outlined in the break-down below as a pre-cursor to the source-code.

Structure of Runtime Invocation Example Source-Code (§6.2.1 - §6.2.7)

HEAD : PRE-AMBLE

• INCLUDES/USINGS/IMPORTS

• FORWARD-DECLARATIONS

BODY : MAIN-FUNCTION

• STEP-1 : DEFINE SCRIPT STATEMENTS

• STEP-2 : WRITE SCRIPT FILE

• STEP-3 : INVOKE KERNEL

• STEP-4 : PROCESS GENERATED MESH

FOOT : UTILITY-ROUTINES

• WRITE-TEXT-FILE

• EXECUTE-COMMAND

-
Page 10 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

6.2.1 Runtime Invocation : C

1 / / QMSH CL−KERNEL : RUNTIME INVOCATION EXAMPLE − C
2 / / − COMPILE : gcc qmsh_runtime_example . c
3 / / − EXECUTE : . / a . out
4
5 / / INCLUDES
6 #include <stdio . h>
7 #include <std l ib . h>
8 #include <str ing . h>
9 #include <unistd . h>

10 #include <sys / timeb . h>
11 #include <sys / types . h>
12 #include <sys / stat . h>
13
14 / / UTILITY−TYPES
15 typedef char * F i le ;
16 typedef char * str ing ;
17 typedef i n t bool ;
18 #define true 1
19 #define fa lse 0
20
21 / / UTILITY−FUNCTIONS : FORWARD−DECLARATION SIGNATURES
22 long now () ;
23 bool w r i t e _ t e x t _ f i l e (str ing t ex t , F i le f i l e p a t h) ;
24 bool execute_command (str ing path , i n t argc , char * * argv) ;
25 bool f i l e _ e x i s t s (F i le f) ;
26 long f i l e _ l e n g t h (F i le f) ;
27
28 / / QMSH_PATH : THE LOCATION OF THE QMSH−KERNEL BINARY EXECUTABLE
29 const str ing QMSH_PATH = " . / qmsh" ; / / LINUX + MAC−OSX
30 / / const s t r i n g QMSH_PATH = " . / qmsh . exe " ; / / WINDOWS
31
32 / / PROGRAM−ENTRY−POINT
33 i n t main () {
34
35 / / 1 : DEFINE SCRIPT STATEMENT(S) AS STRING
36 str ing s c r i p t = " r e t u r n cube − sphere (1 . 2 5) & sphere (1 . 4) ; " ;
37
38 / / 2 : WRITE SCRIPT STATEMENT(S) TO FILE WITH .QMSH EXTENSION
39 w r i t e _ t e x t _ f i l e (s c r i p t , " r t_xmpl_c . qmsh") ;
40
41 / / 3 : INVOKE KERNEL TO ASSEMBLE A .OBJ TRIANGLE MESH FROM SCRIPT−FILE
42 long s t a r t = now () ;
43 char * args [] = { "−obj " , "−tess " , " r t_xmpl_c . qmsh" } ;
44 execute_command (QMSH_PATH, 3 , args) ;
45 long r t = now () − s t a r t ;
46
47 / / 4 : PROCESS GENERATED .OBJ MESH FILE AS REQUIRED
48 F i le ob j = " rt_xmpl_c_TESS . ob j " ;
49 i f (f i l e _ e x i s t s (ob j)) {
50 / / IN THIS BASIC EXAMPLE WE SIMPLY PRINT THE LENGTH OF THE FILE AND SOME
51 / / KEY STATISTICS ABOUT THE ASSEMBLY (I .E . RUNTIME, IO−RATIO) − HOWEVER
52 / / THERE ARE ANY NUMBER OF WAYS ONE COULD USE THE GENERATED MESH FILE
53 long i nsz = s t r l e n (s c r i p t) ;
54 long outsz = f i l e _ l e n g t h (ob j) ;
55 p r i n t f (" Input−Scr ip t−Size : %i bytes \ n " , (i n t) insz) ;
56 p r i n t f (" Output−Mesh−Size : %i bytes \ n " , (i n t) outsz) ;
57 p r i n t f (" Execution−Runtime : %i ms\ n " , (i n t) r t) ;
58 p r i n t f (" IO−Rat io (i n / out) : %f %s \ n " , (((i n t) ((insz / (double) outsz) *10000)) / 100 .0) , "%") ;
59 return 0;
60 }
61 else { p r i n t f ("ERROR! \ n ") ; return −1; }
62 }
63
64 / / UTILITY−FUNCTIONS : IMPLEMENTATIONS
65 long now () {
66 struct timeb t ;
67 f t ime (& t) ;
68 return t . t ime *1000 + t . m i l l i t m ;
69 }
70 bool w r i t e _ t e x t _ f i l e (str ing t ex t , F i le f i l e p a t h) {
71 FILE * f = fopen (f i l e p a t h , "w") ;
72 i f (! f) return fa lse ;
73 f pu t s (tex t , f) ;
74 f c l o s e (f) ;

-
Page 11 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

75 return true ;
76 }
77 bool execute_command (str ing path , i n t argc , char * * argv) {
78 i n t p id = f o r k () ;
79 i f (p id == −1) { return fa lse ; }
80 else i f (p id == 0) {
81 i n t i , a len = argc ;
82 char * a [1+ alen + 1] ;
83 a [0] = (char *) path ;
84 for (i = 0 ; i < alen ; i ++)
85 a [i +1] = (char *) argv [i] ;
86 a [alen +1] = (char *)NULL ;
87 execvp (a [0] , a) ;
88 } else { wa i t (NULL) ; }
89 return true ;
90 }
91 bool f i l e _ e x i s t s (F i le f i l e p a t h) {
92 FILE * f = fopen (f i l e p a t h , " r ") ;
93 i f (! f) return fa lse ;
94 f c l o s e (f) ;
95 return true ;
96 }
97 long f i l e _ l e n g t h (F i le f i l e p a t h) {
98 struct s ta t b u f f e r ;
99 i f (stat (f i l e p a t h , &b u f f e r) == 0)

100 return b u f f e r . s t _s i ze ;
101 return 0;
102 }

Directory Contents Pre
| qmsh
| qmsh_runtime_example.c

Compile, Execute and Terminal Output
| ~$ gcc qmsh_runtime_example.c
| ~$./a.out
| Input-Script-Size : 41 bytes
| Output-Mesh-Size : 42143 bytes
| Execution-Runtime : 162 ms
| IO-Ratio (in/out) : 0.090000 %

Directory Contents Post
| a.out
| qmsh
| qmsh_runtime_example.c
| rt_xmpl_c.qmsh
| rt_xmpl_c_TESS.obj

Figure 3: a simple C program that demonstrates the four main steps in invoking the QMSH kernel at runtime.

-
Page 12 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

6.2.2 Runtime Invocation : C++

1 / / QMSH CL−KERNEL : RUNTIME INVOCATION EXAMPLE − C++
2 / / − COMPILE : g++ qmsh_runtime_example . cpp
3 / / − EXECUTE : . / a . out
4
5 / / INCLUDES
6 #include <string > / / FOR STRING TYPE
7 #include <vector > / / FOR VECTOR TYPE
8 #include <iostream> / / FOR CONSOLE−OUT PRINT STATEMENTS
9 #include <fstream> / / FOR INPUT AND OUTPUT FILE STREAMS

10 #include <chrono> / / FOR SYSTEM CLOCK
11 #include <unistd . h> / / FOR PROCESS MANAGEMENT (FORK, EXEC . .)
12
13 / / USINGS
14 using namespace std ;
15 using namespace std : : chrono ;
16
17 / / UTILITY−TYPE
18 class F i le {
19 public :
20 str ing path ;
21 F i le () { }
22 F i le (const str ing &p) : path (p) { }
23 ~ F i le () { }
24 long s ize () { return ifstream (path , ios : : b ina ry | ios : : ate) . t e l l g () ; }
25 bool e x i s t s () { return ifstream (path) . good () ; }
26 } ;
27
28 / / UTILITY−FUNCTIONS : FORWARD−DECLARATION SIGNATURES
29 long now () ;
30 bool w r i t e _ t e x t _ f i l e (const str ing &tex t , const F i l e & f i l e) ;
31 bool execute_command (const str ing &path , const vector <string > &args) ;
32 bool execute_command (const vector <string > &path_args) ;
33
34 / / QMSH_PATH : THE LOCATION OF THE QMSH−KERNEL BINARY EXECUTABLE
35 const str ing QMSH_PATH = " . / qmsh" ; / / LINUX + MAC−OSX
36 / / const s t r i n g QMSH_PATH = " . / qmsh . exe " ; / / WINDOWS
37
38 / / PROGRAM−ENTRY−POINT
39 i n t main () {
40
41 / / 1 : DEFINE SCRIPT STATEMENT(S) AS STRING
42 str ing s c r i p t = " r e t u r n cube − sphere (1 . 2 5) & sphere (1 . 4) ; " ;
43
44 / / 2 : WRITE SCRIPT STATEMENT(S) TO FILE WITH .QMSH EXTENSION
45 w r i t e _ t e x t _ f i l e (s c r i p t , F i le (" r t_xmpl_cpp . qmsh")) ;
46
47 / / 3 : INVOKE KERNEL TO ASSEMBLE A .OBJ TRIANGLE MESH FROM SCRIPT−FILE
48 long s t a r t = now () ;
49 execute_command (QMSH_PATH, { "−ob j " , "−tess " , " r t_xmpl_cpp . qmsh" }) ;
50 / / execute_command ({ QMSH_PATH, "−obj " , "− tess " , " r t_xmpl_cpp . qmsh" }) ;
51 long r t = now () − s t a r t ;
52
53 / / 4 : PROCESS GENERATED .OBJ MESH FILE AS REQUIRED
54 F i le ob j (" rt_xmpl_cpp_TESS . ob j ") ;
55 i f (ob j . e x i s t s ()) {
56 / / IN THIS BASIC EXAMPLE WE SIMPLY PRINT THE LENGTH OF THE FILE AND SOME
57 / / KEY STATISTICS ABOUT THE ASSEMBLY (I .E . RUNTIME, IO−RATIO) − HOWEVER
58 / / THERE ARE ANY NUMBER OF WAYS ONE COULD USE THE GENERATED MESH FILE
59 long i nsz = s c r i p t . s i ze () ;
60 long outsz = ob j . s i ze () ;
61 cout << " Input−Scr ip t−Size : " << insz << " bytes " << endl ;
62 cout << " Output−Mesh−Size : " << outsz << " bytes " << endl ;
63 cout << " Execution−Runtime : " << r t << " ms" << endl ;
64 cout << " IO−Rat io (i n / out) : " << (((i n t) ((insz / (double) outsz) *10000)) / 100 .0) << " %" << endl ;
65 return 0;
66 }
67 else { cout << "ERROR! " << endl ; return −1; }
68 }
69
70 / / UTILITY−FUNCTIONS : IMPLEMENTATIONS
71 long now () {
72 milliseconds t = duration_cast <milliseconds >(system_clock : : now () . t ime_since_epoch ()) ;
73 return t . count () ;
74 }

-
Page 13 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

75 bool w r i t e _ t e x t _ f i l e (const str ing &tex t , const F i l e & f i l e) {
76 ofstream out ;
77 out . open (f i l e . path) ;
78 i f (out . is_open ()) {
79 out << t e x t ;
80 out . c lose () ;
81 return true ;
82 } return fa lse ;
83 }
84 bool execute_command (const str ing &path , const vector <string > &args) {
85 i n t p id = f o r k () ;
86 i f (p id == −1) { return fa lse ; }
87 else i f (p id == 0) {
88 i n t i , a len = args . s ize () ;
89 char *a [1+ alen + 1] ;
90 a [0] = (char *) path . c_s t r () ;
91 for (i = 0 ; i < alen ; i ++)
92 a [i +1] = (char *) args [i] . c_s t r () ;
93 a [alen +1] = (char *)NULL ;
94 execvp (a [0] , a) ;
95 } else { wa i t (NULL) ; }
96 return true ;
97 }
98 / / ALTERNATIVE INTERFACE
99 bool execute_command (const vector <string > &path_args) {

100 i f (path_args . s i ze () < 1) return fa lse ;
101 i n t p id = f o r k () ;
102 i f (p id == −1) { return fa lse ; }
103 else i f (p id == 0) {
104 i n t i , a len = path_args . s ize () ;
105 char *a [alen + 1] ;
106 for (i = 0 ; i < alen ; i ++)
107 a [i] = (char *) path_args [i] . c_s t r () ;
108 a [alen] = (char *)NULL ;
109 execvp (a [0] , a) ;
110 } else { wa i t (NULL) ; }
111 return true ;
112 }

Directory Contents Pre
| qmsh
| qmsh_runtime_example.cpp

Compile, Execute and Terminal Output
| ~$ g++ qmsh_runtime_example.cpp
| ~$./a.out
| Input-Script-Size : 41 bytes
| Output-Mesh-Size : 42145 bytes
| Execution-Runtime : 161 ms
| IO-Ratio (in/out) : 0.09 %

Directory Contents Post
| a.out
| qmsh
| qmsh_runtime_example.cpp
| rt_xmpl_cpp.qmsh
| rt_xmpl_cpp_TESS.obj

Figure 4: a simple C++ program that demonstrates the four main steps in invoking the QMSH kernel at runtime.

-
Page 14 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

6.2.3 Runtime Invocation : C#

1 / / QMSH CL−KERNEL : RUNTIME INVOCATION EXAMPLE − C#
2 / / − COMPILE : mcs qmsh_runtime_example . cs
3 / / − EXECUTE : mono qmsh_runtime_example . exe / / LINUX + OSX
4 / / − EXECUTE : qmsh_runtime_example . exe / / WINDOWS
5
6 / / USINGS
7 using System ;
8 using System . IO ;
9 using System . Text ;

10 using System . Diagnostics ;
11
12 public class qmsh_runtime_example {
13
14 / / QMSH_PATH : THE LOCATION OF THE QMSH−KERNEL BINARY EXECUTABLE
15 private s t a t i c readonly str ing QMSH_PATH = " . / qmsh" ; / / LINUX + MAC−OSX
16 / / p r i v a t e s t a t i c readonly S t r i n g QMSH_PATH = " . / qmsh . exe " ; / / WINDOWS
17
18 / / PROGRAM−ENTRY−POINT
19 public s t a t i c void Main () {
20
21 / / 1 : DEFINE SCRIPT STATEMENT(S) AS STRING
22 str ing s c r i p t = " r e t u r n cube − sphere (1 . 2 5) & sphere (1 . 4) ; " ;
23
24 / / 2 : WRITE SCRIPT STATEMENT(S) TO FILE WITH .QMSH EXTENSION
25 w r i t e _ t e x t _ f i l e (s c r i p t , new Fi le (" r t_xmpl_cs . qmsh")) ;
26
27 / / 3 : INVOKE KERNEL TO ASSEMBLE A .OBJ TRIANGLE MESH FROM SCRIPT−FILE
28 long s t a r t = now () ;
29 execute_command (QMSH_PATH, "−obj " , "−tess " , " r t_xmpl_cs . qmsh") ;
30 / / execute_command (QMSH_PATH, "−obj −tess r t_xmpl_cs . qmsh ") ;
31 long r t = now () − s t a r t ;
32
33 / / 4 : PROCESS GENERATED .OBJ MESH FILE AS REQUIRED
34 F i le obj = new Fi le (" rt_xmpl_cs_TESS . ob j ") ;
35 i f (ob j . e x i s t s ()) {
36 / / IN THIS BASIC EXAMPLE WE SIMPLY PRINT THE LENGTH OF THE FILE AND SOME
37 / / KEY STATISTICS ABOUT THE ASSEMBLY (I .E . RUNTIME, IO−RATIO) − HOWEVER
38 / / THERE ARE ANY NUMBER OF WAYS ONE COULD USE THE GENERATED MESH FILE
39 long i nsz = s c r i p t . Length ;
40 long outsz = ob j . Length ;
41 p r i n t (" Input−Scr ip t−Size : " + insz + " bytes ") ;
42 p r i n t (" Output−Mesh−Size : " + outsz + " bytes ") ;
43 p r i n t (" Execution−Runtime : " + r t + " ms") ;
44 p r i n t (" IO−Rat io (i n / out) : " + ((i n t) ((insz / (double) outsz) *10000)) /100 .0 + " %") ;
45 } else { p r i n t ("ERROR! ") ; }
46 return ;
47 }
48
49 / / UTILITY−FUNCTIONS
50 private s t a t i c void p r i n t (str ing s) { Console . Wr i teL ine (s) ; }
51 private s t a t i c long now () {
52 return (long) (DateTime .Now − DateTime . MinValue) . T o t a l M i l l i s e c o n d s ;
53 }
54 private s t a t i c bool w r i t e _ t e x t _ f i l e (str ing t ex t , F i le f i l e) {
55 t ry {
56 using (StreamWriter w r i t e r = new StreamWriter (new FileStream (f i l e . path , FileMode . Create))) {
57 w r i t e r . Wr i te (t e x t) ;
58 } return true ;
59 } catch (Except ion ex) { p r i n t (ex . StackTrace) ; return fa lse ; }
60 }
61 private s t a t i c bool execute_command (str ing path , params str ing [] args) {
62 t ry {
63 i n t i , a len = args . Length ;
64 StringBuilder sb = new StringBuilder () ;
65 for (i = 0 ; i < alen ; i ++) {
66 sb . Append (args [i]) ;
67 i f (i < alen−1) sb . Append (" ") ;
68 }
69 S t r i n g a r g s t r = sb . ToStr ing () ;
70 Process proc = Process . S t a r t (path , a r g s t r) ;
71 proc . Wai tForEx i t () ;
72 return true ;
73 } catch (Except ion ex) { p r i n t (ex . StackTrace) ; return fa lse ; }
74 }

-
Page 15 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

75 / / ALTERNATIVE INTERFACE
76 private s t a t i c bool execute_command (str ing path , str ing args) {
77 t ry {
78 Process proc = Process . S t a r t (path , args) ;
79 proc . Wai tForEx i t () ;
80 return true ;
81 } catch (Except ion ex) { p r i n t (ex . StackTrace) ; return fa lse ; }
82 }
83 }
84
85 / / UTILITY−TYPE
86 class F i le {
87 public str ing path ;
88 public F i l e () { }
89 public F i l e (str ing p) { path = p ; }
90 public bool e x i s t s () { return System . IO . F i le . Ex i s t s (path) ; }
91 public long Length { get { return new F i l e In fo (path) . Length ; } }
92 }

Directory Contents Pre
| qmsh
| qmsh_runtime_example.cs

Compile, Execute and Terminal Output
| ~$ mcs qmsh_runtime_example.cs
| ~$ mono qmsh_runtime_example.exe
| Input-Script-Size : 41 bytes
| Output-Mesh-Size : 42144 bytes
| Execution-Runtime : 223 ms
| IO-Ratio (in/out) : 0.09 %

Directory Contents Post
| qmsh
| qmsh_runtime_example.cs
| qmsh_runtime_example.exe
| rt_xmpl_cs.qmsh
| rt_xmpl_cs_TESS.obj

Figure 5: a simple C# program that demonstrates the four main steps in invoking the QMSH kernel at runtime.

-
Page 16 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

6.2.4 Runtime Invocation : Groovy

1 / / QMSH CL−KERNEL : RUNTIME INVOCATION EXAMPLE − GROOVY
2 / / − EXECUTE : groovy qmsh_runtime_example . groovy
3
4 class qmsh_runtime_example {
5
6 / / QMSH_PATH : THE LOCATION OF THE QMSH−KERNEL BINARY EXECUTABLE
7 s t a t i c f i n a l String QMSH_PATH = " . . / . . / qmsh" ; / / LINUX + MAC−OSX
8 / / p r i v a t e s t a t i c f i n a l S t r i n g QMSH_PATH = " . . / . . / qmsh . exe " ; / / WINDOWS
9

10 / / PROGRAM−ENTRY−POINT
11 public s t a t i c void main (String [] args) {
12 / / 1 : DEFINE SCRIPT STATEMENT(S) AS STRING
13 String s c r i p t = " r e t u r n cube − sphere (1 . 2 5) & sphere (1 . 4) ; " ;
14 / / 2 : WRITE SCRIPT STATEMENT(S) TO FILE WITH .QMSH EXTENSION
15 w r i t e _ t e x t _ f i l e (s c r i p t , new Fi le (" r t_xmpl_groovy . qmsh")) ;
16 / / 3 : INVOKE KERNEL TO ASSEMBLE A .OBJ TRIANGLE MESH FROM SCRIPT−FILE
17 long s t a r t = now () ;
18 execute_command (QMSH_PATH, "−obj " , "−tess " , " r t_xmpl_groovy . qmsh") ;
19 long r t = now () − s t a r t ;
20 / / 4 : PROCESS GENERATED .OBJ MESH FILE AS REQUIRED
21 F i le obj = new Fi le (" rt_xmpl_groovy_TESS . ob j ") ;
22 i f (ob j . e x i s t s ()) {
23 / / IN THIS BASIC EXAMPLE WE SIMPLY PRINT THE LENGTH OF THE FILE AND SOME
24 / / KEY STATISTICS ABOUT THE ASSEMBLY (I .E . RUNTIME, IO−RATIO) − HOWEVER
25 / / THERE ARE ANY NUMBER OF WAYS ONE COULD USE THE GENERATED MESH FILE
26 long i nsz = s c r i p t . l eng th () ;
27 long outsz = ob j . l eng th () ;
28 p r i n t l n (" Input−Scr ip t−Size : " + insz + " bytes ") ;
29 p r i n t l n (" Output−Mesh−Size : " + outsz + " bytes ") ;
30 p r i n t l n (" Execution−Runtime : " + r t + " ms") ;
31 p r i n t l n (" IO−Rat io (i n / out) : " + ((i n t) ((insz / (double) outsz) *10000)) /100 .0 + " %") ;
32 } else { p r i n t l n ("ERROR! ") ; }
33 return ;
34 }
35 / / UTILITY−FUNCTIONS
36 s t a t i c long now () { return System . c u r r e n t T i m e M i l l i s () ; }
37 s t a t i c boolean w r i t e _ t e x t _ f i l e (String t ex t , F i le f i l e) {
38 i f (t e x t == nul l | | f i l e == nul l) return fa lse ;
39 t ry {
40 FileOutputStream out = new FileOutputStream (f i l e , fa lse) ;
41 out . w r i t e (t e x t . getBytes ()) ;
42 out . c lose () ;
43 return true ;
44 } catch (Exception e) { e . p r in tS tackTrace () ; return fa lse ; }
45 }
46 s t a t i c boolean execute_command (String . . . path_args) {
47 i f (path_args == nul l | | path_args . leng th < 1) return fa lse ;
48 t ry {
49 Runtime r t = Runtime . getRuntime () ;
50 Process p = r t . exec (path_args) ;
51 p . wai tFor () ;
52 return true ;
53 } catch (Exception ex) { ex . p r in tS tackTrace () ; return fa lse ; }
54 }
55 }

Directory Contents Pre
| qmsh
| qmsh_runtime_example.groovy

Compile, Execute and Terminal Output
| ~$ groovy qmsh_runtime_example.groovy
| Input-Script-Size : 41 bytes
| Output-Mesh-Size : 42148 bytes
| Execution-Runtime : --- ms
| IO-Ratio (in/out) : 0.09 %

Directory Contents Post
| qmsh
| qmsh_runtime_example.groovy
| rt_xmpl_groovy.qmsh
| rt_xmpl_groovy_TESS.obj

Figure 6: a simple Groovy program that demonstrates the four main steps in invoking the QMSH kernel at runtime.

-
Page 17 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

6.2.5 Runtime Invocation : Java

1 / / QMSH CL−KERNEL : RUNTIME INVOCATION EXAMPLE − JAVA
2 / / − COMPILE : javac qmsh_runtime_example . java
3 / / − EXECUTE : java qmsh_runtime_example
4
5 / / IMPORTS
6 import java . io . F i le ;
7 import java . io . FileOutputStream ;
8
9 public class qmsh_runtime_example {

10
11 / / QMSH_PATH : THE LOCATION OF THE QMSH−KERNEL BINARY EXECUTABLE
12 private s t a t i c f i n a l String QMSH_PATH = " . / qmsh" ; / / LINUX + MAC−OSX
13 / / p r i v a t e s t a t i c f i n a l S t r i n g QMSH_PATH = " . / qmsh . exe " ; / / WINDOWS
14
15 / / PROGRAM−ENTRY−POINT
16 public s t a t i c void main (String [] args) {
17 / / 1 : DEFINE SCRIPT STATEMENT(S) AS STRING
18 String s c r i p t = " r e t u r n cube − sphere (1 . 2 5) & sphere (1 . 4) ; " ;
19 / / 2 : WRITE SCRIPT STATEMENT(S) TO FILE WITH .QMSH EXTENSION
20 w r i t e _ t e x t _ f i l e (s c r i p t , new Fi le (" r t_xmpl_ java . qmsh")) ;
21 / / 3 : INVOKE KERNEL TO ASSEMBLE A .OBJ TRIANGLE MESH FROM SCRIPT−FILE
22 long s t a r t = now () ;
23 execute_command (QMSH_PATH, "−obj " , "−tess " , " r t_xmpl_ java . qmsh") ;
24 long r t = now () − s t a r t ;
25 / / 4 : PROCESS GENERATED .OBJ MESH FILE AS REQUIRED
26 F i le obj = new Fi le (" rt_xmpl_java_TESS . ob j ") ;
27 i f (ob j . e x i s t s ()) {
28 / / IN THIS BASIC EXAMPLE WE SIMPLY PRINT THE LENGTH OF THE FILE AND SOME
29 / / KEY STATISTICS ABOUT THE ASSEMBLY (I .E . RUNTIME, IO−RATIO) − HOWEVER
30 / / THERE ARE ANY NUMBER OF WAYS ONE COULD USE THE GENERATED MESH FILE
31 long i nsz = s c r i p t . l eng th () ;
32 long outsz = ob j . l eng th () ;
33 p r i n t (" Input−Scr ip t−Size : " + insz + " bytes ") ;
34 p r i n t (" Output−Mesh−Size : " + outsz + " bytes ") ;
35 p r i n t (" Execution−Runtime : " + r t + " ms") ;
36 p r i n t (" IO−Rat io (i n / out) : " + ((i n t) ((insz / (double) outsz) *10000)) /100 .0 + " %") ;
37 } else { p r i n t ("ERROR! ") ; }
38 return ;
39 }
40 / / UTILITY−FUNCTIONS
41 private s t a t i c long now () { return System . c u r r e n t T i m e M i l l i s () ; }
42 private s t a t i c void p r i n t (String s) { System . out . p r i n t l n (s) ; }
43 private s t a t i c boolean w r i t e _ t e x t _ f i l e (String t ex t , F i le f i l e) {
44 i f (t e x t == nul l | | f i l e == nul l) return fa lse ;
45 t ry {
46 FileOutputStream out = new FileOutputStream (f i l e , fa lse) ;
47 out . w r i t e (t e x t . getBytes ()) ;
48 out . c lose () ;
49 return true ;
50 } catch (Exception e) { e . p r in tS tackTrace () ; return fa lse ; }
51 }
52 private s t a t i c boolean execute_command (String . . . path_args) {
53 i f (path_args == nul l | | path_args . leng th < 1) return fa lse ;
54 t ry {
55 Runtime r t = Runtime . getRuntime () ;
56 Process p = r t . exec (path_args) ;
57 p . wai tFor () ;
58 return true ;
59 } catch (Exception ex) { ex . p r in tS tackTrace () ; return fa lse ; }
60 }
61 }

Directory Contents Pre
| qmsh
| qmsh_runtime_example.java

Compile, Execute and Terminal Output
| ~$ javac qmsh_runtime_example.java
| ~$ java qmsh_runtime_example
| Input-Script-Size : 41 bytes
| Output-Mesh-Size : 42146 bytes
| Execution-Runtime : 182 ms
| IO-Ratio (in/out) : 0.09 %

Directory Contents Post
| qmsh
| qmsh_runtime_example.class
| qmsh_runtime_example.java
| rt_xmpl_java.qmsh
| rt_xmpl_java_TESS.obj

Figure 7: a simple Java program that demonstrates the four main steps in invoking the QMSH kernel at runtime.

-
Page 18 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

6.2.6 Runtime Invocation : Objective-C

1 / / QMSH CL−KERNEL : RUNTIME INVOCATION EXAMPLE − OBJECTIVE−C
2 / / − COMPILE : clang −x ob jec t i ve−c qmsh_runtime_example .m
3 / / − EXECUTE : . / a . out
4
5 / / INCLUDES
6 #include <stdio . h>
7 #include <std l ib . h>
8 #include <str ing . h>
9 #include <unistd . h>

10 #include <sys / timeb . h>
11 #include <sys / types . h>
12 #include <sys / stat . h>
13
14 / / UTILITY−TYPES
15 typedef char * F i le ;
16 typedef char * str ing ;
17 typedef i n t bool ;
18 #define true 1
19 #define fa lse 0
20
21 / / UTILITY−FUNCTIONS : FORWARD−DECLARATION SIGNATURES
22 long now () ;
23 bool w r i t e _ t e x t _ f i l e (str ing t ex t , F i le f i l e p a t h) ;
24 bool execute_command (str ing path , i n t argc , char * * argv) ;
25 bool f i l e _ e x i s t s (F i le f) ;
26 long f i l e _ l e n g t h (F i le f) ;
27
28 / / QMSH_PATH : THE LOCATION OF THE QMSH−KERNEL BINARY EXECUTABLE
29 const str ing QMSH_PATH = " . / qmsh" ; / / LINUX + MAC−OSX
30 / / const s t r i n g QMSH_PATH = " . / qmsh . exe " ; / / WINDOWS
31
32 / / PROGRAM−ENTRY−POINT
33 i n t main () {
34
35 / / 1 : DEFINE SCRIPT STATEMENT(S) AS STRING
36 str ing s c r i p t = " r e t u r n cube − sphere (1 . 2 5) & sphere (1 . 4) ; " ;
37
38 / / 2 : WRITE SCRIPT STATEMENT(S) TO FILE WITH .QMSH EXTENSION
39 w r i t e _ t e x t _ f i l e (s c r i p t , " r t_xmpl_ob jc . qmsh") ;
40
41 / / 3 : INVOKE KERNEL TO ASSEMBLE A .OBJ TRIANGLE MESH FROM SCRIPT−FILE
42 long s t a r t = now () ;
43 char * args [] = { "−obj " , "−tess " , " r t_xmpl_ob jc . qmsh" } ;
44 execute_command (QMSH_PATH, 3 , args) ;
45 long r t = now () − s t a r t ;
46
47 / / 4 : PROCESS GENERATED .OBJ MESH FILE AS REQUIRED
48 F i le ob j = " rt_xmpl_objc_TESS . ob j " ;
49 i f (f i l e _ e x i s t s (ob j)) {
50 / / IN THIS BASIC EXAMPLE WE SIMPLY PRINT THE LENGTH OF THE FILE AND SOME
51 / / KEY STATISTICS ABOUT THE ASSEMBLY (I .E . RUNTIME, IO−RATIO) − HOWEVER
52 / / THERE ARE ANY NUMBER OF WAYS ONE COULD USE THE GENERATED MESH FILE
53 long i nsz = s t r l e n (s c r i p t) ;
54 long outsz = f i l e _ l e n g t h (ob j) ;
55 p r i n t f (" Input−Scr ip t−Size : %i bytes \ n " , (i n t) insz) ;
56 p r i n t f (" Output−Mesh−Size : %i bytes \ n " , (i n t) outsz) ;
57 p r i n t f (" Execution−Runtime : %i ms\ n " , (i n t) r t) ;
58 p r i n t f (" IO−Rat io (i n / out) : %f %s \ n " , (((i n t) ((insz / (double) outsz) *10000)) / 100 .0) , "%") ;
59 return 0;
60 }
61 else { p r i n t f ("ERROR! \ n ") ; return −1; }
62 }
63
64 / / UTILITY−FUNCTIONS : IMPLEMENTATIONS
65 long now () {
66 struct timeb t ;
67 f t ime (& t) ;
68 return t . t ime *1000 + t . m i l l i t m ;
69 }
70 bool w r i t e _ t e x t _ f i l e (str ing t ex t , F i le f i l e p a t h) {
71 FILE * f = fopen (f i l e p a t h , "w") ;
72 i f (! f) return fa lse ;
73 f pu t s (tex t , f) ;
74 f c l o s e (f) ;

-
Page 19 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

75 return true ;
76 }
77 bool execute_command (str ing path , i n t argc , char * * argv) {
78 i n t p id = f o r k () ;
79 i f (p id == −1) { return fa lse ; }
80 else i f (p id == 0) {
81 i n t i , a len = argc ;
82 char * a [1+ alen + 1] ;
83 a [0] = (char *) path ;
84 for (i = 0 ; i < alen ; i ++)
85 a [i +1] = (char *) argv [i] ;
86 a [alen +1] = (char *)NULL ;
87 execvp (a [0] , a) ;
88 } else { wa i t (NULL) ; }
89 return true ;
90 }
91 bool f i l e _ e x i s t s (F i le f i l e p a t h) {
92 FILE * f = fopen (f i l e p a t h , " r ") ;
93 i f (! f) return fa lse ;
94 f c l o s e (f) ;
95 return true ;
96 }
97 long f i l e _ l e n g t h (F i le f i l e p a t h) {
98 struct s ta t b u f f e r ;
99 i f (stat (f i l e p a t h , &b u f f e r) == 0)

100 return b u f f e r . s t _s i ze ;
101 return 0;
102 }

Directory Contents Pre
| qmsh
| qmsh_runtime_example.m

Compile, Execute and Terminal Output
| ~$ clang -x objective-c qmsh_runtime_example.m
| ~$./a.out
| Input-Script-Size : 41 bytes
| Output-Mesh-Size : 42146 bytes
| Execution-Runtime : --- ms
| IO-Ratio (in/out) : 0.090000 %

Directory Contents Post
| a.out
| qmsh
| qmsh_runtime_example.m
| rt_xmpl_objc.qmsh
| rt_xmpl_objc_TESS.obj

Figure 8: a simple Objective-C program demonstrating the four main steps in invoking the QMSH kernel at runtime.

-
Page 20 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

6 EXAMPLE USAGE
6.2 Runtime Invocation via System Calls

6.2.7 Runtime Invocation : Python

1 # QMSH CL−KERNEL : RUNTIME INVOCATION EXAMPLE − PYTHON
2 # − EXECUTE : python qmsh_runtime_example . py
3
4 # IMPORTS
5 import t ime
6 import os . path
7 import subprocess
8
9 # QMSH_PATH : THE LOCATION OF THE QMSH−KERNEL BINARY EXECUTABLE

10 QMSH_PATH = " . / qmsh" ; # LINUX + MAC−OSX
11 # QMSH_PATH = " . / qmsh . exe " ; # WINDOWS
12
13 # UTILITY−ROUTINES
14 def now () : return i n t (round (t ime . t ime () * 1000)) ;
15 def w r i t e _ t e x t _ f i l e (tex t , f i l e p a t h) :
16 f = open (f i l e p a t h , "w") ;
17 f . w r i t e (t e x t) ;
18 f . c lose () ;
19 def execute_command (* path_args) : subprocess . c a l l (l i s t (path_args)) ;
20 def f i l e _ e x i s t s (f i l e p a t h) : return os . path . i s f i l e (f i l e p a t h) ;
21 def f i l e _ l e n g t h (f i l e p a t h) : return os . s t a t (f i l e p a t h) . s t _s i ze ;
22
23 # PROGRAM−ENTRY−POINT
24 def main () :
25 # 1 : DEFINE SCRIPT STATEMENT(S) AS STRING
26 s c r i p t = " r e t u r n cube − sphere (1 . 2 5) & sphere (1 . 4) ; " ;
27 # 2 : WRITE SCRIPT STATEMENT(S) TO FILE WITH .QMSH EXTENSION
28 w r i t e _ t e x t _ f i l e (s c r i p t , " r t_xmpl_python . qmsh") ;
29 # 3 : INVOKE KERNEL TO ASSEMBLE A .OBJ TRIANGLE MESH FROM SCRIPT−FILE
30 s t a r t = now () ;
31 execute_command (QMSH_PATH, "−obj " , "−tess " , " r t_xmpl_python . qmsh") ;
32 r t = now () − s t a r t ;
33 # 4 : PROCESS GENERATED .OBJ MESH FILE AS REQUIRED
34 obj = " rt_xmpl_python_TESS . ob j " ;
35 i f (f i l e _ e x i s t s (ob j)) :
36 # IN THIS BASIC EXAMPLE WE SIMPLY PRINT THE LENGTH OF THE FILE AND SOME
37 # KEY STATISTICS ABOUT THE ASSEMBLY (I .E . RUNTIME, IO−RATIO) − HOWEVER
38 # THERE ARE ANY NUMBER OF WAYS ONE COULD USE THE GENERATED MESH FILE
39 i nsz = len (s c r i p t) ;
40 outsz = f i l e _ l e n g t h (ob j) ;
41 pr in t (" Input−Scr ip t−Size : " + st r (insz) + " bytes ") ;
42 pr in t (" Output−Mesh−Size : " + st r (outsz) + " bytes ") ;
43 pr in t (" Execution−Runtime : " + st r (r t) + " ms") ;
44 pr in t (" IO−Rat io (i n / out) : " + st r (i n t (((insz / f l o a t (outsz)) * 1 0 0 0 0)) / 1 0 0 . 0) + " %") ;
45 else :
46 pr in t ("ERROR! ") ;
47 return ;
48 # RUN
49 main () ;

Directory Contents Pre
| qmsh
| qmsh_runtime_example.py

Compile, Execute and Terminal Output
| ~$ python qmsh_runtime_example.py
| Input-Script-Size : 41 bytes
| Output-Mesh-Size : 42148 bytes
| Execution-Runtime : 161 ms
| IO-Ratio (in/out) : 0.09 %

Directory Contents Post
| qmsh
| qmsh_runtime_example.py
| rt_xmpl_py.qmsh
| rt_xmpl_py_TESS.obj

Figure 9: a simple Python program that demonstrates the four main steps in invoking the QMSH kernel at runtime.

-
Page 21 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

7 ADDITIONAL NOTES

7 Additional Notes

Output File Naming Convention

The mesh interchange files generated by the kernel are named according to the following convention.

The body of each output filename is drawn directly from the filename of its defining input script - with
the file extension changed to reflect the target format. For interchange formats that support both trian-
gle and polygonal representations (i.e. OBJ, OFF and PLY) an additional topological indicator token is
appended to each output file’s name to denote the type (or class) of reader necessary to open each file.

The topological post-fix take the form _TESS (to indicate tessellated triangle elements) or _NGON (to
indicate polygonal elements). To help clarify: invocation of the kernel command:

./qmsh -obj -tess -ngon -c -n test/a.qmsh

would yield a pair of OBJ mesh files named (respectively): test/a_TESS.obj and test/a_NGON.obj.
Whereas invocation of the kernel command:

./qmsh -stl test/a.qmsh

would yield a single STL mesh file named test/a.stl.

This convention aims to remove ambiguity and ensure that it is trivial (at a glance) to determine the type
of mesh stored by a generated interchange file - in a format agnostic manner.

Trouble-Shooting: Resolving Common Sources of Script Error

Missing Return Statement: resulting from scripting oversight. Resolution: add a suitable return state-
ment. Remember: quick-mesh scripts require a return statement to be considered syntactically valid.

Failure to Terminate Statement: resulting from omitted (typically forgotten) semi-colons at the end of a
line. Resolution: make sure that each script statement is terminated by a semi-colon.

Invalid Use of Commas Instead of Dots: (and vice-versa) resulting from input typing errors. Resolu-
tion: ensure that these punctuation symbols are used appropriately in a script. Remember: that in the
quick-mesh grammar dots (periods) are used for decimal numbers and post-fix function notation - whilst
commas are used to separate elements in argument lists and arrays.

Invalid Input Argument(s) to Built-In Function: resulting from unfamiliarity with function signatures. Res-
olution: check and then revise the input arguments in the offending function invocation.

Unbalanced Operative Scope: resulting from either missing brackets or braces. Resolution: add (or re-
move) brackets and braces to ensure that each operative scope that is opened is closed appropriately.

-
Page 22 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

7 ADDITIONAL NOTES
7.1 Performance Considerations

7.1 Performance Considerations

Finally this section outlines some performance considerations to bear in mind when wielding the kernel.

Computational Efficiency: Execution Runtime
A number of factors govern the total execution time for a quick-mesh script. The dominating factor is the
complexity of the geometric arrangement encoded by a script. In particular this means that the simpler
the expression of geometric form encapsulated by a script the less time taken to execute the script by
the kernel. In practical terms the greatest source of complexity in mesh assembly (in the quick-mesh
grammar) is the application of CSG boolean-logic operations. For although (conceptually) the notion
of geometric-arithmetic is delightfully simple to intuit - in computational terms - the implementation of
minimal-vertex polyhedral solid-modelling operations bears a far heavier polynomial cost - relative to
many of the kernel’s O(n) (linear-complexity) built-in functions. In this regard - the key consideration
to bear in mind is that the runtime of a script will largely be governed by the number of and com-
plexity inherent to its CSG operations. The unfortunate aspect is that the complexity of a polyhedral
CSG operation is non-trivial to determine exactly (other than by execution). However, despite this - a
number of heuristics (rules-of-thumb) are applicable to the growth in execution time exhibited by the
kernel’s boolean-operations. Firstly: the greater the number of vertices in each operand - the greater
the runtime. Secondly: the greater the number of successive boolean-ops applied to an operand, the
greater the runtime. Thirdly: the greater the number of element interactions (between the operands in
a boolean-op) that induce non-simplex polygons the greater the runtime.

Computational Efficiency: Execution Memory Requirements
As the total execution time - the runtime memory requirements for assembly of a mesh are largely de-
termined by the memory requirements of the boolean-operations in its defining script. Hence memory-
use-wise the same considerations apply to the growth in memory-use exhibited by the kernel.

Computational Efficiency: Simultaneous-Processing via Multi-Core Parallelism
The kernel executes as a single-core process - meaning that it is amenable to simple multi-core paral-
lelism - by running each instance as a separate process. For example this can be handled trivially
by issuing system-calls from multiple threads in a high-level general-purpose scripting or systems-
programming language. Examples of languages suitable for coordinating this form of parallelism in-
clude: Java, Python and C-Sharp. Note: that when that when running the kernel in this manner - it
is the responsibility of the invoker to manage any load-balancing deemed necessary. In particular one
should aim to distribute the mesh-assembly work-load evenly across the kernel instances. Additionally
strive to keep the number of active kernel instances running at any one time below the number of avail-
able cores on the executing device or machine. For the fewer active kernel instances the less scheduling
and context-switching the underlying operating system has to do to accommodate them simultaneously.
If too many kernel instances are running - undesirable thrashing-styled effects can result in which the
operating-system must cane CPU-time simply to coordinate switching between the glut of processes.

Geometric Stability: Limitations of Fixed-Precision Floating-Point Arithmetic
The kernel uses fixed-precision arithmetic as opposed to arbitrary-precision arithmetic to coordinate its
procedural geometric operations that involve floating-decimal-point calculations. Given that a finite num-
ber of bits are used to store each decimal number the kernel’s floating-point calculations are subject to
loss of information which may cause subtle numerical errors (overflow, underflow, rounding error). Often
this limitation is imperceptible in the mesh generated by the kernel, however under certain conditions
- and for certain arrangements - this can result in mesh which fail to preserve geometric features be-
yond the grain of accuracy afforded (attainable via) fixed-precision floating-point arithmetic. In extreme
circumstances this can lead to cumulative errors that result in topologically invalid geometric entities be-
ing propagated through the assembly process - which has the potential to interfere with minimal-vertex

-
Page 23 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

QMSH: Command-Line Kernel
Quick-Start User-Guide: V0

7 ADDITIONAL NOTES
7.1 Performance Considerations

optimisation and even prevent convergence. Whilst the kernel employs a myriad of complementary nu-
merically robust predicates to guard against such occurrences (and uses integer-arithmetic whenever
applicable) - its underlying low runtime memory-use architecture means it is beyond the kernel’s scope
to guarantee the topological correctness of the polyhedra it generates. This undesirable aspect of the
kernel represents a practical trade-off of absolute-correctness in favour of computational-efficiency.

Geometric Stability: Shading Artefacts Resulting from Mesh Attribute Interpolation
The kernel’s minimal-vertex optimisations generate mesh that prioritise brevity and compactness over
triangle quality. Practically - this means that during the tessellation of optimised N-gonal elements -
skinny sliver triangles may be produced. Such elements have the potential to cause perceptible shad-
ing artefacts in object-order rendering algorithms and visualisation systems - and manifest most notably
as discontinuities in shading at the clipped edges of smooth-group regions in a surface mesh. Note:
these artefacts are less prevalent (yet still present) in image-order rendering techniques - as the product
of per-pixel or sub-pixel over per-vertex attribute interpolation. In order to remedy such occurrences -
retopologise the offending portions of the entity in question. This can be achieved by directly modifying
the input script - for example by altering the discretisation-steps argument(s) used to generate native
geometry. Alternatively this may also be resolved externally - by feeding a kernel generated output in-
terchange file into a third-party high-quality mesh-generator program. In such instances useful search
terms include: FEM-mesh-generator, high-quality-mesh-generator and Delaunay-mesh-generator.

Input-Output: Mesh Storage Requirements
The considerations and rules-of-thumb applicable to the storage requirements for the mesh interchange
files generated by the kernel are as follows. Binary interchange files almost always require less space
to store relative to their analogous ASCII interchange files in the same format. Interchange files con-
taining mixed-topology (N-gonal) mesh elements typically require slightly less space to store than their
tessellated counterparts - due to there being fewer indices to store. However - be aware that some
mesh readers, loaders and importers may not directly support concave or complex face handling. Gen-
erally speaking - the greater the number of vertices in a mesh - the greater the space required to store
the mesh. For binary interchange this growth is near-linear (subject to the exception of format specific
header blocks) - however for ASCII interchange this growth is sub-linear (i.e. linear and then some) -
due to the additional character overhead associated with printing increasingly large index values. This
means that whilst it is possible to accurately estimate the storage requirements for binary interchange
files if the number of vertices are known, for ASCII interchange files it is recommended to use at least
a 2-factor overestimate - i.e. budget for the storage requirements of an ASCII file to be roughly twice
that of a binary equivalent. Practically - this implies that by partitioning a large multi-component mesh
into separate scripts - one can reduce the overhead associated with storing it in ASCII form. Note: the
recommended partitioning threshold is 216 vertices (less than 65,536) - as the 65K limit is common to
pre-existing APIs, engines and DCC systems (such as OpenGL-ES and Unity-3D).

Input-Output: Mesh Representation Compatibility
The kernel’s N-gonal mesh may or may not be trivially tessellatable by applications such as meshlab
depending on the presence of complex-polygons. This means that if the polygons that define an output
mesh contain holes and islands - typical mesh-loaders will fail to load them correctly. In such cases -
use triangles for the surface representation and the N-gon variant for poly-loop edge representation.

So ends this guide. I hope you enjoy using the command-line kernel as much as I enjoy making it.

-
Page 24 of 24

-
K. Edum-Fotwe | Codemine-Industrial-Software

	Introduction
	Pre-Requisites

	Inputs & Outputs
	Executable File
	Command Format
	Command-Line Options
	Option-Flags to Control General-Operation of the Kernel
	Option-Flags to Control Output 3D Model File Formats
	Option-Flags to Control Output Geometric Attributes
	Option-Flags to Control Constructive-Modelling Operations
	Option-Flags to Control Mesh Post-Processing Operations

	Example Usage
	Command-Line Invocation
	Runtime Invocation via System Calls
	Runtime Invocation : C
	Runtime Invocation : C++
	Runtime Invocation : C#
	Runtime Invocation : Groovy
	Runtime Invocation : Java
	Runtime Invocation : Objective-C
	Runtime Invocation : Python

	Additional Notes
	Performance Considerations

